
Multitask Gaussian Processes for Scalable Modeling
of Complex Systems with Functional Inputs

Razak Christophe Sabi Gninkou1 Andrés F. López-Lopera2 Rodolphe Le Riche3 Franck Massa4

1� Université Polytechnique Hauts-de-France, CERAMATHS
2� Université de Montpellier, IMAG 3� CNRS, LIMOS 4� Université Polytechnique

Hauts-de-France, LAMIH

Abstract

We introduce a multitask Gaussian process framework for probabilistic modeling of complex
systems with functional covariates. The proposed approach specifically targets scenarios
where the input variables represent time-dependent curves but it can be generalized to
multivariate functional data such us spatial, spatio-temporel or other high-dimensional signals.
Considering functional data as inputs of complex computer codes been recently considered in
many scientific and engineering applications, however modeling correlation between diiferent
tasks remained as an open question.

Our model relies on a fully separable kernel architecture that captures dependencies along
three complementary dimensions: the task, the functional input, and the scalar (temporal)
domain. The latter scalar covariate is considered to take into account time-varying outputs,
a parameter requised in our mechanical application where outputs represent time-varying
forces. This separability naturally induces a Kronecker product formulation of the covariance
operator, enabling exact and scalable inference. Closed-form expressions for the marginal
likelihood and posterior predictions are derived, while structured tensor algebra ensures
numerical efficiency and GPU compatibility.

The proposed framework is validated on both synthetic and real mechanical datasets, demon-
strating its ability to deliver accurate predictions and well-calibrated uncertainty estimates
at a reduced computational cost. The entire approach is implemented in PyTorch/GPyTorch,
leveraging optimized tensor operations and GPU acceleration for efficient computation of the
marginal likelihood and posterior predictions. This work establishes a general and efficient
probabilistic modeling paradigm for high-dimensional functional inputs, applicable to a wide
range of domains from computational mechanics to other data-driven complex systems.
Keywords: Gaussian processes; functional data; separable kernels; machine learning; surro-
gate modeling; uncertainty quantification; complex systems.
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1. Context and Problem Statement
▶ We aim to predict correlated funtional outputs (e.g., time-series) when the

shared inputs are also functional (multitask framework).
▶ Application and inspiration: mechanical assembly with forces and

displacements at different locations (rivets, other).

SPR joint : aluminum–PA66 assembly with 18 rivets. Vertical load near rivet 2; each task s
corresponds to a force series.
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Functional input f1 (load/material profiles).
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Simulator outputs gs(F , t) (one curve per
rivet/task).

Setup :
▶ Let F = (f1, . . . , fdf) ∈ F(T ,R)df , with T ⊂ R, be a vector of functional inputs.
▶ For a task index s ∈ S = {1, . . . , S} and scalar covariate t ∈ R (e.g., time or

load level), the simulator produces :
gs(F , t) = complex mechanical response for task s.

Goal :
▶ To replace this costly simulator by a Gaussian process (GP) surrogate that

captures both functional dependencies and task correlations.

2. Multitask Gaussian Processes with functional inputs
Model : We place a zero-mean GP prior on g = {gs(F , t)}:

Y ∼ GP(0, k), Cov
(
Ys(F , t), Ys′(F ′, t′)

)
= k

(
(s,F , t), (s′,F ′, t′)

)
, (1)

defined on S × F(T ,R)df × R. Thus k jointly captures task, functional, and
scalar-covariate dependencies.
Separable kernel structure :

Cov(Ys(F , t), Ys′(F ′, t′)) = [KS]s,s′ kf(F ,F ′)kt(t, t′) (2)
▶ KS: inter-task correlation matrix, kf : functional kernel, kt: scalar kernel
Construction of the kernel kf : For F = (f1, . . . , fdf) ∈ F(T ,R)df ,

kf(F ,F ′) = ψ
(
∥F −F ′∥ℓ

)
, ∥F −F ′∥2

ℓ =

df∑

d=1

∥fd − f ′d∥2
L2(T )

ℓ2
d

. (3)

On any Hilbert space ( L2(T )), kf is PSD if ψ(√·) is completely monotone
(Schoenberg, 1938), equivalently

ψ(r) =

∫ ∞

0
e−ωr2 dµ(ω), µ ≥ 0. (4)

Examples : Squared exponential e−r2/2ℓ2; Exponential e−r/ℓ.

3. Practical implementation with only observations of fd
Project each fd on a finite basis {Υd,r}pdr=1:

fd(t) ≈
pd∑

r=1
αd,rΥd,r(t), ∥fd − f ′d∥2

L2 ≈ (αd −α′
d)

⊤Φd(αd −α′
d), (5)

with [Φd]r,r′ =
∫
T Υd,rΥd,r′ dt (and Φd = I if the basis is orthonormal).

4. Hyperparameter Estimation
▶ Covariance (shared time grid) : Stack y ∈ Rn with n = Snf nt and

y ∼ N (0, Kθ), [Kθ](s,i,j),(s′,i′,j′) = KS(s, s′) kf(F i,F i′) kt(tj, tj′).
▶ Kronecker structure : Kθ = KS ⊗ Kf ⊗ Kt

[KS]s,s′=KS(s, s′), [Kf ]i,i′=kf(F i,F i′), [Kt]j,j′=kt(tj, tj′).
▶ Parameters : θ =

(
KS, σ2

f , ℓf , σ
2
t , ℓt

)

▶ NLML : L(θ) = 1
2 y⊤K−1

θ y + 1
2 log |Kθ| + n

2 log(2π).

Tensorized Cholesky & fast NLML : If KS = LSL⊤S , Kf = LfL⊤f , Kt = LtL⊤t , then
Kθ = LL⊤ with L = LS ⊗ Lf ⊗ Lt. Let α = L−1y (no explicit inverse); then

L(θ) = 1
2∥α∥2 +

n∑

k=1
log Lkk +

n
2 log(2π), (6)

where Lkk are the diagonal entries of L. To solve α = L−1y, apply L−1 by
mode-wise triangular solves via the Kronecker–vec identity:

( D⊗

d=1
Ad
)
vec(Y) = vec

(
AD · · ·A2(A1Y)

)
. (7)
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Comparison of α = L−1y computation strategies

▶ Complexity : from O
(
(Snfnt)3) to O

(
Snfn2

t + Sntn2
f + nfntS2).

5. Posterior prediction
▶ Given from estimation : α = L−1y and the Cholesky factors Ltask, Lf , Lt.
▶ Factorized cross-covariance at test (s,F⋆, t⋆) :

u⋆ = kS(·, s) ⊗ kf(·,F⋆) ⊗ kt(·, t⋆).
▶ Mode-wise triangular solves :

ζS = L−1
S kS(·, s), ζf = L−1

f kf(·,F⋆), ζt = L−1
t kt(·, t⋆),

û⋆ = ζS ⊗ ζf ⊗ ζt.

▶ Prediction :
ms = û⊤⋆α, vs = kS(s, s) kf(F⋆,F⋆) kt(t⋆, t⋆)︸ ︷︷ ︸

ks(F⋆, t⋆)
− ∥û⋆∥2.

6. Numerical experiments
▶ Mechanical dataset: df = 3, S = 4, ntrain = 166, ntest = 60.
▶ Multitask GP (MTGP) (GPyTorch) with Kronecker-based scalable inference.
▶ Model trained via multi-start Adam optimization with early stopping and

adaptive learning rate
▶ Functional inputs encoded by PCA, B-splines, Wavelets, or hybrids.
▶ Performance criteria: Q2 (accuracy) and CA95 (uncertainty coverage).
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Examples of MTGP predictions of the output force-displacement curves
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