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Abstract

We introduce a multitask Gaussian process framework for probabilistic modeling of complex
systems with functional covariates. The proposed approach specifically targets scenarios
where the input variables represent time-dependent curves but it can be generalized to
multivariate functional data such us spatial, spatio-temporel or other high-dimensional signals.
Considering functional data as inputs of complex computer codes been recently considered in
many scientific and engineering applications, however modeling correlation between diiferent
tasks remained as an open question.

Our model relies on a fully separable kernel architecture that captures dependencies along
three complementary dimensions: the task, the functional input, and the scalar (temporal)
domain. The latter scalar covariate is considered to take into account time-varying outputs,
a parameter requised in our mechanical application where outputs represent time-varying
forces. This separability naturally induces a Kronecker product formulation of the covariance
operator, enabling exact and scalable inference. Closed-form expressions for the marginal
likelihood and posterior predictions are derived, while structured tensor algebra ensures
numerical efficiency and GPU compatibility.

The proposed tramework is validated on both synthetic and real mechanical datasets, demon-
strating its ability to deliver accurate predictions and well-calibrated uncertainty estimates
at a reduced computational cost. The entire approach is implemented in PyTorch/GPyTorch,
leveraging optimized tensor operations and GPU acceleration for efficient computation of the
marginal likelihood and posterior predictions. This work establishes a general and efficient
probabilistic modeling paradigm for high-dimensional functional inputs, applicable to a wide
range of domains from computational mechanics to other data-driven complex systems.
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1. Context and Problem Statement

» We aim to predict correlated funtional outputs (e.g., time-series) when the
shared inputs are also functional (multitask framework).

» Application and inspiration: mechanical assembly with forces and
displacements at different locations (rivets, other).
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SPR joint : aluminum-PA66 assembly with 18 rivets. Vertical load near rivet 2; each task s
corresponds to a force series.
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Functional input f, (load/material proﬁles). Simulator outputs gs(F, t) (one curve per
rivet/task).
Setup:
> Let F = (fs,....fq,) € F(T,R)%, with T C R, be a vector of functional inputs.
» Forataskindexsc S ={1,...,S} and scalar covariate t € R (e.g., time or
load level), the simulator produces :

gs(F,t) = complex mechanical response for task s.

Goal:

» To replace this costly simulator by a Gaussian process (GP) surrogate that
captures both functional dependencies and task correlations.

2. Multitask Gaussian Processes with functional inputs

Model : We place a zero-mean GP prior on g = {gs(F,t)}:
Y ~ GP(0,R), Cov(Ys(F, 1), Ys(F', 1)) = R((s, F, 1), (s, F', 1)), (1)

defined on S x F(T,R)% x R. Thus R jointly captures task, functional, and
scalar-covariate dependencies.
Separable kernel structure :

COV(Ys(F, 1), Ys(F',t)) = [Ksls o Ri(F, F')Re(t, t) (2)

> Ks: inter-task correlation matrix, Rs: functional kernel, R:: scalar kernel
Construction of the kernel ks : For F = (fi,.. .. f4.) € F(T,R)%,
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On any Hilbert space ( L(T)), ks is PSD if ¢(/-) is completely monotone
(Schoenberg, 1938), equivalently

5(r) = / Te“tdu(w), p>o (4)

Examples : Squared exponential e~"/2%; Exponential e~"/*.

(3)
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3. Practical implementation with only observations of f4

6. Numerical experiments

Project each fy on a finite basis {T4,}r.: » Mechanical dataset: df = 3, S = 4, Nyain = 166, Ntest = 60.
Pd » Multitask GP (MTGP) (GPyTorch) with Kronecker-based scalable inference.
fat) = Y agrTart), |fa—fallt: = (g — o) ' ®g(ag — ap), (5) » Model trained via multi-start Adam optimization with early stopping and
=i adaptive learning rate
with [®g],» = [-Tq,Tqrdt (and ®4 = I if the basis is orthonormal). » Functional inputs encoded by PCA, B-splines, Wavelets, or hybrids.

» Performance criteria: Q2 (accuracy) and CAq: (uncertainty coverage).

nakey

4. Hyperparameter Estimation

y ~ N(0, Ky), [Kol(s.ijy.(s.injy = Ks(S,S') Re(Fi, Fir) Re(t, ty).

» Covariance (shared time grid) : Stack y € R" with n = Sn¢n; and | TH HT | ﬂ w
> Kronecker structure : Ky = Ks ® Kr ® K;

DN
1 < B PCA
@, avelet
[Kslss=Ks(s, "), [Kelii=Re(Fi, Fi), [Keljj=Re(t;, tj). ’ = b
Bl Wavelet + PCA
> Parameters: 6 = (Ks, o?, £, o, (1) | BN B-pline + PCA

> NLML: £(0) =y 'K,y + 2 log |Kg| + 2 log(2).

) Functional encodings impact on predictions
Tensorized Cholesky & fast NLML : If Ks = LsLg, Ke = L¢L!, K = LiL{, then

1.0 1.0 T
Ko = LL" with L = Ls ® L ® L. Let a = L™y (no explicit inverse); then 0 lﬂi lH % T * 09 | T T
1 . n n 0.8 0.8
£(6) = x| + Y log L+ log(2m), 6 - S0
R=1 0.6 05 06 B = =1
5 . ' - ' [ 2
where L, are the diagonal entries of L. To solve a = L™y, apply L~ by . . [
mode-wise triangular solves via the Kronecker-vec identity: g g =
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Comparison of o = L'y computation strategies

> Complexity : from O((Snsny)?) to O(Sngng + Snenz + neniS?).

. . . Examples of MTGP predictions of the output force-displacement curves
5. Posterior prediction

> Given from estimation: o = L'y and the Cholesky factors Lisk, Ly, Lt.
» Factorized cross-covariance at test (s, F,. t,):

U, = Rs(-,S) ® Re(-, F,) @ Re(-,t,).
» Mode-wise triangular solves :
Cs = Lg'ks(+,S), G =L Re( FL), Go= Lol ),
G*:C5®Cf®§t.
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